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Lemma 0.1 (for Example 3.8). Let Ng be the closed nonorientable surface of genus g. The
cohomology of Ng with Z2 coefficients is

Hk =


Z2 k = 0

(Z2)
g k = 1

Z2 k = 2

0 k ≥ 3

Proof. (We use Zn as shorthand for Z/nZ and Zg as shorthand for ⊕gi=1Z.) Via a cellular
homology computation, the homology of Ng with Z coefficients is

Hk(Ng) ∼=


Z k = 0

Zg−1 ⊕ Z2 k = 1

0 k ≥ 2

By the Universal Coefficient Theorem, the cohomology of Ng with Z2 coefficients is

Hk(Ng;Z2) ∼= Ext(Hk−1(Ng),Z2)⊕ Hom(Hk(Ng),Z2)

Using the above equality, we can compute Hk to be as claimed.

Proposition 0.2 (for Example 3.8). Let Ng be the closed nonorientable surface of genus g.
The cup product Hk ×H` → Hk+` is as follows. For k = 0,

`: Z2 ×H` → H` 0 ` x = 0 1 ` x = x

When k + ` ≥ 3, ` is the zero map. For k = ` = 1, `: H1 ×H1 → H2 is

`:

g⊕
i=1

Z2 〈αi〉 ×
g⊕
i=1

Z2 〈αi〉 → Z2 〈γ〉 αi ` αj = δijγ
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Proof. We define the shorthand Hk = Hk(Ng;Z2). We want to understand the cup product
`: Hk×H` → Hk+`. We know that ` is unital, so the single nonzero element of H0(Ng;Z2)
is the unit, so for each ` the product H0 ×H` → H` is either the identity action on H` or
the trivial action on H`. If k + ` ≥ 3, then the product is always zero since then Hk+` = 0,
so the only remaining product to understand is H1 ×H1 → H2.

We can draw Ng as the following identification space. We draw a regular 2g-gon and
identify successive sides. For example, N3 can be depicted as below.

a1
a1a2

a2
a3

a3

We further subdivide Ng to put a ∆-complex structure on it. Add another vertex at the
center of the 2g-gon, call the central vertex q and the outer vertex p. Add radial edges from
the center vertex to each outer vertex, oriented outward. We’ll label these edges as ei, fi and
the resulting triangles by Xi, Yi so that we get the following picture.

q

ek

p ak

Xk

p

ak
Yk

ek+1

fk

As in Hatcher Exercise 3.8, the dotted line represents the element αk ∈ H2, which is dual to
ak. Note that the set of αk for 1 ≤ k ≤ g forms a basis for H2. Note that αi(ek) = 0 for all
i, k, and αi(fj) = δij, and αi(aj) = δij. To determine αi ` αj, we need to see how they act
on the triangles Xk, Yk, using the definition on page 206 of Hatcher. We can compute that

(αi ` αj)(Xk) = αi(ek)αj(αk) = 0

(αi ` αj)(Yk) = αi(fk)αj(ak) = δikδjk = δijk

This tells us that αi ` αj = 0 if i 6= j. When i 6= j, αi ` αj 6= 0, so it must be the one
nonzero element of H2. Thus we have fully understood the cup product structure (at least
algebraically) on Hk(Ng;Z2).

Proposition 0.3 (Exercise 3.1.3). As a Z4-module, a free resolution of Z2 is

. . . Z4 Z4 Z4 Z2 017→2 1 7→2 17→2 17→1

Consequently, ExtnZ4
(Z2,Z2) ∼= Z2 for all n ≥ 0. (Notably, it is nonzero for all n.)
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Proof. First, we need to show that the depicted sequence of maps is a free resolution. Ob-
viously, Z4 is a free Z4-module, so we just need to check exactness. Note that a Z4-module
homomorphism is determined uniquely by the image of 1, so all of our maps are well-defined
Z4 homomorphisms. The map Z4 → Z2, 1 7→ 1 is surjective, so we have exactness at Z2. At
each Z4, the kernel is 〈2〉, and the image is also 〈2〉, so the sequence is exact. Thus this is a
free resolution of Z2. To compute ExtnZ4

(Z2,Z2), we form the deleted resolution

. . . Z4 Z4 Z4 017→2 1 7→2 17→2

and apply the functor HomZ4(−,Z2), resulting in the following chain complex.

0 HomZ4(Z4,Z2) HomZ4(Z4,Z2) HomZ4(Z4,Z2) . . .

Let φ : Z4 → Z4 denote 1 7→ 2. Then the maps in the above chain complex are all the map
ψ 7→ ψ ◦ φ. We know that HomZ4(Z4,Z2) ∼= Z2, with the identity map corresponding to 1
and the zero map corresponding to 0. For any ψ ∈ HomZ4(Z4,Z2), the composition ψ ◦ φ is
zero, so our chain complex looks like

0 Z2 Z2 Z2 . . .0 0 0 0

That is, ExtnZ4
(Z2,Z2) is the nth homology of the above chain complex. Since all them maps

are zero, the nth homology is just the nth group in the complex, so ExtZ4(Z2,Z2) = Z2 for
all n ≥ 0.

Note: We have place 3.1.8a after 3.1.8b because the solution to part (a) uses the solution
to part (b).

Proposition 0.4 (Exercise 3.1.8b). Let A ⊂ X be a closed subspace that is a deformation
retract of some neighborhood. Then the quotient map q : X → X/A induces isomorphisms

q∗ : Hn(X,A;G)→ H̃n(X/A;G) for all n.

Proof. Let V be a neighborhood of A in X that deformation retracts onto A. Note that
Hn(A,A) = 0, and a deformation retraction of V onto A gives a homotopy equivalence
of pairs (V,A) ' (A,A). Thus Hn(V,A) ∼= Hn(A,A) by homotopy invariance, and so
Hn(V,A) = 0. Thus in the long exact sequence of the triple (X, V,A) we obtain isomorphisms
Hn(X,A) ∼= Hn(X, V ).

Similarly, a deformation retraction of V onto A induces a deformation retraction of V/A
onto A/A, so we get a homotopy equivalence of pairs (V/A,A/A) ' (A/A,A/A), and thus
Hn(V/A,A/A) ∼= Hn(A/A,A/A) = 0. Considering the long exact sequence of the triple
(X/A, V/A,A/A), we get isomorphisms Hn(X/A,A/A) ∼= Hn(X/A, V/A).

If we think of q : X → X/A as a map of pairs q : (X,A)→ (X/A,A/A) and alternately
q : (X, V )→ (X/A, V/A), we can fit q∗ and our isomorphisms into the following diagram.

Hn(X,A) Hn(X, V )

Hn(X/A,A/A) Hn(X/A, V/A)

q∗ q∗
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The diagram commutes by naturality of the long exact sequence. By the Excision Theorem
for cohomology, we obtain another commutative square, where the horizontal arrows are
isomorphisms.

Hn(X, V ) Hn(X − A, V − A)

Hn(X/A, V/A) Hn(X/A− A/A, V/A− A/A)

q∗ q∗

The restriction q : (X − A)→ (X/A− A/A) is a homeomorphism, so the restricted map of
pairs q : (X − A, V − A) → (X/A − A/A, V/A − A/A) is also a homeomorphism, so the q∗
on the right of the above diagram is an isomorphism. Stiching our two commutative squares
together, we obtain the commutative diagram

Hn(X,A) Hn(X, V ) Hn(X − A, V − A)

Hn(X/A,A/A) Hn(X/A, V/A) Hn(X/A− A/A, V/A− A/A)

q∗ q∗ q∗

where we now know that every horizontal map and the far right map are isomorphisms.
Then by commutativity, both of the other vertical q∗ maps are isomorphisms. Finally, note
that H̃n(X/A;G) ∼= Hn(X/A,A/A).

Proposition 0.5 (Exercise 3.1.8a). Let G be an abelian group. Then for n ≥ 1,

H̃k(Sn;G) ∼=

{
G k = n

0 else

We compute this in two ways: first via the long exact sequence of a pair, and second through
the Mayer-Vietoris sequence.

Proof. We will do this by induction on n, first using the LES of a pair, and then with Mayer-
Vietoris. The base case applies to both, so we only do it once. For n = 0, we know that
H̃k(S0) = 0 since S0 is a disjoint union of two discrete points.

Now assume the result holds for S1, . . . , Sn. Consider the good pair (Dn, Sn−1). Since

Dn is contractible, H̃k(Dn) = 0 for all k, so the long exact sequence of the pair (Dn, Sn−1)
breaks up into short exact sequences for each k as follows.

0 H̃k(Dn, Sn−1;G) H̃k+1(Sn+1;G) 0

By the part (b) above, since (Dn, Sn−1) is a good pair, we have H̃k(Dn, Sn−1;G) ∼= H̃k(Dn/Sn+1;G).

Notice that Dn/Sn−1 = Sn, so we obtain H̃k+1(Sn+1;G) ∼= H̃k(Sn;G), completing the in-
duction.

Now we repeat the same inductive step using the Mayer-Vietoris sequence, for didactic
purposes. Assume the result holds for S1, . . . , Sn. Let A,B ⊂ Sn+1 respectively be the
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northern and southern hemispheres, so A ∪B = Sn+1 and A ∩B = Sn. Part of the reduced
Mayer-Vietories sequence for this decomposition of Sn+1 is

H̃k(A;G)⊕ H̃k(B;G)→ H̃k(A ∩B;G)→ H̃k+1(Sn+1, G)→ H̃k+1(A;G)⊕ H̃k+1(B;G)

Since A,B are retractable, H̃k(A;G) = H̃k(B;G) = 0, so this gives an isomorphism

H̃k(Sn;G) → H̃k+1(Sn+1;G). Thus the reduced homology groups for S̃n+1 are as claimed,
and the induction is complete.

Proposition 0.6 (Exercise 3.1.8c). If a subspace A is a retract of X, then Hn(X;G) ∼=
Hn(A;G)⊕Hn(X,A;G). (G is an arbitrary abelian group.)

Proof. Let r : X → A be a retraction. Then we have the following commutative diagram,
and the induced commmutative diagram on cohomology with coefficients in G.

X Hn(X;G)

A A Hn(A;G) Hn(A;G)

r ι∗ι

IdA

r∗

Id∗A=Id

In particular, since ι∗ has a right inverse, it is surjective. Consider the long exact sequence
on cohomology of the pair (X,A).

. . . Hn−1(A;G) Hn(X,A;G) Hn(X;G) Hn(A;G) . . .ι∗ δ j∗ ι∗ δ

From this long exact sequence, we obtain the following short exact sequence.

0 Hn(X,A;G)/ im δ Hn(X;G) im ι∗ 0
j∗ ι∗

As already noted, ι∗ is surjective, so im ι∗ = Hn(A;G). Since ι∗ is surjective, by exactness
at Hn−1(A;G), ker δ = Hn−1(A;G), that is, δ is the zero map. Thus im δ = 0. Then the
short exact sequence becomes

0 Hn(X,A;G) Hn(X;G) Hn(A;G) 0
j∗ ι∗

As already noted, the induced map r∗ : Hn(A;G)→ Hn(X;G) composes with ι∗ to give the
identity on Hn(A;G). That is to say, this short exact sequence splits, so by the splitting
lemma we get the desired direct sum decomposition.

Hn(X;G) ∼= Hn(A;G)⊕Hn(X,A;G)

Proposition 0.7 (Exercise 3.1.9). Suppose f : Sn → Sn has degree d. Then f ∗ : Hn(Sn;G)→
Hn(Sn;G) is multiplication by d. (Recall that Hn(Sn;G) ∼= G.)
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Proof. We follow the proof of Lemma 2.49 from Hatcher. For g ∈ G, let φg : Z → G be
the map 1 7→ g. Note that φg induces a map on the cochain complexes (φg)∗ : C∗n(Sn;Z)→
C∗n(Sn;G), which acts on a general cochain as

(φg)∗

(∑
i

niαi

)
=
∑
i

(nig)αi

where ni ∈ Z and
∑

i niαi is a singular cochain. Since (φg)∗ commutes with the coboundary

operator, it induces a map (φg)∗ : H̃n(Sn;Z)→ H̃n(Sn;G). Since f ∗ is Z-linear, that is,

f ∗

(∑
i

niαi

)
=
∑
i

nif
∗(αi)

we get that f ∗ “commutes” with (φg)∗ by a relatively simple calculation. (We put commutes
in quotations because f ∗ refers to two different maps on either side of the equal sign.)

(φg)∗ ◦ f ∗
(∑

i

niαi

)
= (φg)∗

(∑
i

nif
∗(αi)

)
=
∑
i

(nig)f ∗(αi)

= f ∗

(∑
i

(nig)αi

)
= f ∗ ◦ (φg)∗

(∑
i

niαi

)
=⇒ (φg)∗ ◦ f ∗ = f ∗ ◦ (φg)∗

Thus the middle square of the following diagram commutes.

Z H̃n(Sn;Z) H̃n(Sn;Z) Z

G H̃n(Sn;G) H̃n(Sn;G) G

∼=

φg

f∗

(φg)∗

∼=

(φg)∗ φg

∼= f∗ ∼=

Thinking about the formula for (φg)∗ on cochains above, we see that the outer squares
commute. Since the upper f ∗ is multiplication by d (by hypothesis), the lower f ∗ must also
be be multiplication by d in order to satisfy commutativity.

Lemma 0.8 (for Exercise 3.1.13). Let X, Y be path connected and f : (X, x0) → (Y, y0) be
continuous. Let pX : π1(X) → H1(X) ∼= π1(X)/[π1(X), π1(X)] be the canonical projection.
Define pY by analogy. Let fπ∗ be the induced map on π1 and let fH∗ be the induced map on
H1. Then we have the following commutative diagram.

π1(X) π1(Y )

H1(X) H1(Y )

fπ∗

pX pY

fH∗
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Proof. Let [γ] ∈ π1(X), with representative γ : S1 → X. Then we have the following
commutative diagrams.

S1 H1(S
1)

X Y H1(X) H1(Y )

γ
f◦γ

γH∗
(f◦γ)H∗

f fH∗

Commutativity of the left diagram is obvious, commutativity of the second is just the state-
ment that H1 is a covariant functor. Using the discussion on page 168 of Hatcher, we have
a good way to think about pX and pY . We know that H1(S1) ∼= Z; let a be the generator.
As noted by Hatcher, an equivalent definition of pX and pY is

pX [γ] = γH∗ (a) pY [η] = ηH∗ (a)

Now we can just do a computation to see that the original square commutes. Recall the the
definition of fπ∗ is just fπ∗ [γ] = [f ◦ γ].

fH∗ ◦ pX [γ] = fH∗ ◦ γH∗ (a) = (f ◦ γ)H∗ (a) = pY [f ◦ γ] = pY ◦ fπ∗ [γ]

Thus our square commutes.

Lemma 0.9 (for Exercise 3.1.13). Let X be path connected and G an abelian group. Let K
be a K(G, 1) space. Let p = pX and fH∗ , f

π
∗ be as in the previous lemma. Then we have the

following commutative diagram.

π1(X)

H1(X) G

p fπ∗

fH∗

Proof. Since G is abelian, G ∼= π1(K) ∼= H1(K), so the right side of the square from the
previous lemma collapses.

Definition 0.1. Let (X, x0) and (Y, y0) be pointed spaces. The we define 〈X,Y 〉 to be the
set of basepoint-preserving homotopy classes of basepoint-preserving maps X → Y .

Proposition 0.10 (Exercise 3.1.13). Let (X, x0) be a connected CW complex, and G be an
abelian group. Then define a map

Φ : 〈X,K(G, 1)〉 → Hom(H1(X), G) = H1(X;G)

For f : X → K(G, 1), let [f ] denote the class of f up to basepoint-preserving homotopy, and
define Φ[f ] = fH∗ : H1(X) → H1(K(G, 1)) ∼= G. (Recall that Hom(H1(X), G) = H1(X;G)
via the UCT.) Then Φ is a bijection.
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Proof. First, note that Φ is well defined because the induced map fH∗ depends only on the
homotopy class of f .

In the following, we suppress basepoints in all of our notation, but the reader should keep
in mind that X and K(G, 1) do have basepoints.

As in the previous lemmas, let p : π1(X) → H1(X) be the canonical projection. We
define Ψ : Hom(H1(X), G)→ 〈X,K(G, 1)〉 as follows. Given α ∈ Hom(H1(X), G), consider
the composition α ◦ p : π1(X)→ G.

π1(X)

H1(X) G

p α◦p

α

Since G = π1(K(G, 1)), by Proposition 1.B9, there is a basepoint-preserving map α̃ : X →
K(G, 1) inducing α ◦ p (that is, α̃π∗ = α ◦ p), and furthermore α̃ is unique up to homotopy
fixing x0. Then we define Ψ(α) = [α̃]. Thus it is clear that [α̃] ∈ 〈X,K(G, 1)〉. However, we
still need to check that Ψ is well-defined.

To check that Ψ is well-defined, we need to check that if α = β, then Ψ(α) = Ψ(β).

If α = β, then α ◦ p = β ◦ p. Then by Proposition 1.B9, we get α̃, β̃ : X → K(G, 1),
both preserving basepoints. By the “uniqueness up to basepoint-preserving homotopy,”
since α ◦ p = β ◦ p, there is a basepoint-preserving homotopy α̃ ' β̃. Thus [α̃] = [β̃], so
Ψ(α) = Ψ(β). Thus Ψ is well-defined.

Now we claim that Ψ is inverse to Φ. Let α ∈ Hom(H1(X), G). Then

Φ ◦Ψ(α) = Φ [α̃] = α̃H∗

By the previous lemma, α̃π∗ = α̃H∗ ◦ p. By definition of Ψ, α̃π∗ = α ◦ p. Thus α ◦ p = α̃H∗ ◦ p, so
α = α̃H∗ on the image of p. But p is surjective, so this says that α = α̃∗H. Thus Φ◦Ψ(α) = α.
Now let [f ] ∈ 〈X,K(G, 1)〉 and choose a representative f : X → K(G, 1). Then

Ψ ◦ Φ[f ] = Ψ(fH∗ )

By the previous lemma, fπ∗ = fH∗ ◦ p, so f is a map that induces fH∗ ◦ p, so Ψ(fH∗ ) = [f ].
Thus Ψ ◦ Φ[f ] = [f ].
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