Homework 2 MTH 869 Algebraic Topology

Joshua Ruiter

October 24, 2017

Lemma 0.1 (for Example 3.8). Let N_g be the closed nonorientable surface of genus g. The cohomology of N_g with \mathbb{Z}_2 coefficients is

$$H^{k} = \begin{cases} \mathbb{Z}_{2} & k = 0\\ (\mathbb{Z}_{2})^{g} & k = 1\\ \mathbb{Z}_{2} & k = 2\\ 0 & k \ge 3 \end{cases}$$

Proof. (We use \mathbb{Z}_n as shorthand for $\mathbb{Z}/n\mathbb{Z}$ and \mathbb{Z}^g as shorthand for $\bigoplus_{i=1}^g \mathbb{Z}$.) Via a cellular homology computation, the homology of N_g with \mathbb{Z} coefficients is

$$H_k(N_g) \cong \begin{cases} \mathbb{Z} & k = 0\\ \mathbb{Z}^{g-1} \oplus \mathbb{Z}_2 & k = 1\\ 0 & k \ge 2 \end{cases}$$

By the Universal Coefficient Theorem, the cohomology of N_g with \mathbb{Z}_2 coefficients is

$$H^k(N_g; \mathbb{Z}_2) \cong \operatorname{Ext}(H_{k-1}(N_g), \mathbb{Z}_2) \oplus \operatorname{Hom}(H_k(N_g), \mathbb{Z}_2)$$

Using the above equality, we can compute H^k to be as claimed.

Proposition 0.2 (for Example 3.8). Let N_g be the closed nonorientable surface of genus g. The cup product $H^k \times H^\ell \to H^{k+\ell}$ is as follows. For k = 0,

$$\smile: \mathbb{Z}_2 \times H^\ell \to H^\ell \qquad 0 \smile x = 0 \qquad 1 \smile x = x$$

When $k + \ell \geq 3$, \smile is the zero map. For $k = \ell = 1$, $\smile: H^1 \times H^1 \to H^2$ is

$$\smile: \bigoplus_{i=1}^{g} \mathbb{Z}_2 \langle \alpha_i \rangle \times \bigoplus_{i=1}^{g} \mathbb{Z}_2 \langle \alpha_i \rangle \to \mathbb{Z}_2 \langle \gamma \rangle \qquad \alpha_i \smile \alpha_j = \delta_{ij} \gamma$$

Proof. We define the shorthand $H^k = H^k(N_g; \mathbb{Z}_2)$. We want to understand the cup product $\smile: H^k \times H^\ell \to H^{k+\ell}$. We know that \smile is unital, so the single nonzero element of $H^0(N_g; \mathbb{Z}_2)$ is the unit, so for each ℓ the product $H^0 \times H^\ell \to H^\ell$ is either the identity action on H^ℓ or the trivial action on H^ℓ . If $k + \ell \geq 3$, then the product is always zero since then $H^{k+\ell} = 0$, so the only remaining product to understand is $H^1 \times H^1 \to H^2$.

We can draw N_g as the following identification space. We draw a regular 2g-gon and identify successive sides. For example, N_3 can be depicted as below.

We further subdivide N_g to put a Δ -complex structure on it. Add another vertex at the center of the 2g-gon, call the central vertex q and the outer vertex p. Add radial edges from the center vertex to each outer vertex, oriented outward. We'll label these edges as e_i , f_i and the resulting triangles by X_i , Y_i so that we get the following picture.

As in Hatcher Exercise 3.8, the dotted line represents the element $\alpha_k \in H^2$, which is dual to a_k . Note that the set of α_k for $1 \leq k \leq g$ forms a basis for H^2 . Note that $\alpha_i(e_k) = 0$ for all i, k, and $\alpha_i(f_j) = \delta_{ij}$, and $\alpha_i(a_j) = \delta_{ij}$. To determine $\alpha_i \sim \alpha_j$, we need to see how they act on the triangles X_k, Y_k , using the definition on page 206 of Hatcher. We can compute that

$$(\alpha_i \smile \alpha_j)(X_k) = \alpha_i(e_k)\alpha_j(\alpha_k) = 0$$

$$(\alpha_i \smile \alpha_j)(Y_k) = \alpha_i(f_k)\alpha_j(a_k) = \delta_{ik}\delta_{jk} = \delta_{ijk}$$

This tells us that $\alpha_i \smile \alpha_j = 0$ if $i \neq j$. When $i \neq j$, $\alpha_i \smile \alpha_j \neq 0$, so it must be the one nonzero element of H^2 . Thus we have fully understood the cup product structure (at least algebraically) on $H^k(N_q; \mathbb{Z}_2)$.

Proposition 0.3 (Exercise 3.1.3). As a \mathbb{Z}_4 -module, a free resolution of \mathbb{Z}_2 is

 $\dots \xrightarrow{1 \mapsto 2} \mathbb{Z}_4 \xrightarrow{1 \mapsto 2} \mathbb{Z}_4 \xrightarrow{1 \mapsto 2} \mathbb{Z}_4 \xrightarrow{1 \mapsto 2} \mathbb{Z}_4 \xrightarrow{1 \mapsto 1} \mathbb{Z}_2 \longrightarrow 0$

Consequently, $\operatorname{Ext}_{\mathbb{Z}_4}^n(\mathbb{Z}_2,\mathbb{Z}_2)\cong\mathbb{Z}_2$ for all $n\geq 0$. (Notably, it is nonzero for all n.)

Proof. First, we need to show that the depicted sequence of maps is a free resolution. Obviously, \mathbb{Z}_4 is a free \mathbb{Z}_4 -module, so we just need to check exactness. Note that a \mathbb{Z}_4 -module homomorphism is determined uniquely by the image of 1, so all of our maps are well-defined \mathbb{Z}_4 homomorphisms. The map $\mathbb{Z}_4 \to \mathbb{Z}_2, 1 \mapsto 1$ is surjective, so we have exactness at \mathbb{Z}_2 . At each \mathbb{Z}_4 , the kernel is $\langle 2 \rangle$, and the image is also $\langle 2 \rangle$, so the sequence is exact. Thus this is a free resolution of \mathbb{Z}_2 . To compute $\operatorname{Ext}^n_{\mathbb{Z}_4}(\mathbb{Z}_2,\mathbb{Z}_2)$, we form the deleted resolution

$$\dots \xrightarrow{1 \mapsto 2} \mathbb{Z}_4 \xrightarrow{1 \mapsto 2} \mathbb{Z}_4 \xrightarrow{1 \mapsto 2} \mathbb{Z}_4 \longrightarrow 0$$

and apply the functor $\operatorname{Hom}_{\mathbb{Z}_4}(-,\mathbb{Z}_2)$, resulting in the following chain complex.

$$0 \longrightarrow \operatorname{Hom}_{\mathbb{Z}_4}(\mathbb{Z}_4, \mathbb{Z}_2) \longrightarrow \operatorname{Hom}_{\mathbb{Z}_4}(\mathbb{Z}_4, \mathbb{Z}_2) \longrightarrow \operatorname{Hom}_{\mathbb{Z}_4}(\mathbb{Z}_4, \mathbb{Z}_2) \longrightarrow \dots$$

Let $\phi : \mathbb{Z}_4 \to \mathbb{Z}_4$ denote $1 \mapsto 2$. Then the maps in the above chain complex are all the map $\psi \mapsto \psi \circ \phi$. We know that $\operatorname{Hom}_{\mathbb{Z}_4}(\mathbb{Z}_4, \mathbb{Z}_2) \cong \mathbb{Z}_2$, with the identity map corresponding to 1 and the zero map corresponding to 0. For any $\psi \in \operatorname{Hom}_{\mathbb{Z}_4}(\mathbb{Z}_4, \mathbb{Z}_2)$, the composition $\psi \circ \phi$ is zero, so our chain complex looks like

$$0 \xrightarrow{0} \mathbb{Z}_2 \xrightarrow{0} \mathbb{Z}_2 \xrightarrow{0} \mathbb{Z}_2 \xrightarrow{0} \dots$$

That is, $\operatorname{Ext}_{\mathbb{Z}_4}^n(\mathbb{Z}_2, \mathbb{Z}_2)$ is the *n*th homology of the above chain complex. Since all them maps are zero, the *n*th homology is just the *n*th group in the complex, so $\operatorname{Ext}_{\mathbb{Z}_4}(\mathbb{Z}_2, \mathbb{Z}_2) = \mathbb{Z}_2$ for all $n \geq 0$.

Note: We have place 3.1.8a after 3.1.8b because the solution to part (a) uses the solution to part (b).

Proposition 0.4 (Exercise 3.1.8b). Let $A \subset X$ be a closed subspace that is a deformation retract of some neighborhood. Then the quotient map $q: X \to X/A$ induces isomorphisms $q_*: H^n(X, A; G) \to \widetilde{H}^n(X/A; G)$ for all n.

Proof. Let V be a neighborhood of A in X that deformation retracts onto A. Note that $H^n(A, A) = 0$, and a deformation retraction of V onto A gives a homotopy equivalence of pairs $(V, A) \simeq (A, A)$. Thus $H^n(V, A) \cong H^n(A, A)$ by homotopy invariance, and so $H^n(V, A) = 0$. Thus in the long exact sequence of the triple (X, V, A) we obtain isomorphisms $H^n(X, A) \cong H^n(X, V)$.

Similarly, a deformation retraction of V onto A induces a deformation retraction of V/Aonto A/A, so we get a homotopy equivalence of pairs $(V/A, A/A) \simeq (A/A, A/A)$, and thus $H^n(V/A, A/A) \cong H^n(A/A, A/A) = 0$. Considering the long exact sequence of the triple (X/A, V/A, A/A), we get isomorphisms $H^n(X/A, A/A) \cong H^n(X/A, V/A)$.

If we think of $q: X \to X/A$ as a map of pairs $q: (X, A) \to (X/A, A/A)$ and alternately $q: (X, V) \to (X/A, V/A)$, we can fit q_* and our isomorphisms into the following diagram.

$$\begin{array}{ccc} H^n(X,A) & \longrightarrow & H^n(X,V) \\ & & & \downarrow^{q_*} & & \downarrow^{q_*} \\ H^n(X/A,A/A) & \longrightarrow & H^n(X/A,V/A) \end{array}$$

The diagram commutes by naturality of the long exact sequence. By the Excision Theorem for cohomology, we obtain another commutative square, where the horizontal arrows are isomorphisms.

$$H^{n}(X,V) \longleftarrow H^{n}(X-A,V-A)$$

$$\downarrow^{q_{*}} \qquad \qquad \qquad \downarrow^{q_{*}}$$

$$H^{n}(X/A,V/A) \longleftarrow H^{n}(X/A-A/A,V/A-A/A)$$

The restriction $q: (X - A) \to (X/A - A/A)$ is a homeomorphism, so the restricted map of pairs $q: (X - A, V - A) \to (X/A - A/A, V/A - A/A)$ is also a homeomorphism, so the q_* on the right of the above diagram is an isomorphism. Stiching our two commutative squares together, we obtain the commutative diagram

$$\begin{array}{cccc} H^n(X,A) & & \longrightarrow & H^n(X,V) & \longleftarrow & H^n(X-A,V-A) \\ & & & \downarrow^{q_*} & & \downarrow^{q_*} \\ H^n(X/A,A/A) & & \longrightarrow & H^n(X/A,V/A) & \longleftarrow & H^n(X/A-A/A,V/A-A/A) \end{array}$$

where we now know that every horizontal map and the far right map are isomorphisms. Then by commutativity, both of the other vertical q_* maps are isomorphisms. Finally, note that $\widetilde{H}^n(X/A; G) \cong H^n(X/A, A/A)$.

Proposition 0.5 (Exercise 3.1.8a). Let G be an abelian group. Then for $n \ge 1$,

$$\widetilde{H}^k(S^n;G) \cong \begin{cases} G & k=n\\ 0 & else \end{cases}$$

We compute this in two ways: first via the long exact sequence of a pair, and second through the Mayer-Vietoris sequence.

Proof. We will do this by induction on n, first using the LES of a pair, and then with Mayer-Vietoris. The base case applies to both, so we only do it once. For n = 0, we know that $\tilde{H}^k(S^0) = 0$ since S^0 is a disjoint union of two discrete points.

Now assume the result holds for S^1, \ldots, S^n . Consider the good pair (D^n, S^{n-1}) . Since D^n is contractible, $\tilde{H}^k(D^n) = 0$ for all k, so the long exact sequence of the pair (D^n, S^{n-1}) breaks up into short exact sequences for each k as follows.

$$0 \longrightarrow \widetilde{H}^k(D^n, S^{n-1}; G) \longrightarrow \widetilde{H}^{k+1}(S^{n+1}; G) \longrightarrow 0$$

By the part (b) above, since (D^n, S^{n-1}) is a good pair, we have $\widetilde{H}^k(D^n, S^{n-1}; G) \cong \widetilde{H}^k(D^n/S^{n+1}; G)$. Notice that $D^n/S^{n-1} = S^n$, so we obtain $\widetilde{H}^{k+1}(S^{n+1}; G) \cong \widetilde{H}^k(S^n; G)$, completing the induction.

Now we repeat the same inductive step using the Mayer-Vietoris sequence, for didactic purposes. Assume the result holds for S^1, \ldots, S^n . Let $A, B \subset S^{n+1}$ respectively be the

northern and southern hemispheres, so $A \cup B = S^{n+1}$ and $A \cap B = S^n$. Part of the reduced Mayer-Vietories sequence for this decomposition of S^{n+1} is

$$\widetilde{H}^{k}(A;G) \oplus \widetilde{H}^{k}(B;G) \to \widetilde{H}^{k}(A \cap B;G) \to \widetilde{H}^{k+1}(S^{n+1},G) \to \widetilde{H}^{k+1}(A;G) \oplus \widetilde{H}^{k+1}(B;G)$$

Since A, B are retractable, $\widetilde{H}^k(A; G) = \widetilde{H}^k(B; G) = 0$, so this gives an isomorphism $\widetilde{H}^k(S^n; G) \to \widetilde{H}^{k+1}(S^{n+1}; G)$. Thus the reduced homology groups for \widetilde{S}^{n+1} are as claimed, and the induction is complete.

Proposition 0.6 (Exercise 3.1.8c). If a subspace A is a retract of X, then $H^n(X;G) \cong H^n(A;G) \oplus H^n(X,A;G)$. (G is an arbitrary abelian group.)

Proof. Let $r: X \to A$ be a retraction. Then we have the following commutative diagram, and the induced commutative diagram on cohomology with coefficients in G.

In particular, since ι_* has a right inverse, it is surjective. Consider the long exact sequence on cohomology of the pair (X, A).

$$\dots \xrightarrow{\iota^*} H^{n-1}(A;G) \xrightarrow{\delta} H^n(X,A;G) \xrightarrow{j^*} H^n(X;G) \xrightarrow{\iota^*} H^n(A;G) \xrightarrow{\delta} \dots$$

From this long exact sequence, we obtain the following short exact sequence.

$$0 \longrightarrow H^n(X, A; G) / \operatorname{im} \delta \xrightarrow{j^*} H^n(X; G) \xrightarrow{\iota^*} \operatorname{im} \iota_* \longrightarrow 0$$

As already noted, ι_* is surjective, so $\operatorname{im} \iota_* = H^n(A; G)$. Since ι_* is surjective, by exactness at $H^{n-1}(A; G)$, ker $\delta = H^{n-1}(A; G)$, that is, δ is the zero map. Thus $\operatorname{im} \delta = 0$. Then the short exact sequence becomes

$$0 \longrightarrow H^n(X,A;G) \xrightarrow{j^*} H^n(X;G) \xrightarrow{\iota^*} H^n(A;G) \longrightarrow 0$$

As already noted, the induced map $r_*: H^n(A; G) \to H^n(X; G)$ composes with ι_* to give the identity on $H^n(A; G)$. That is to say, this short exact sequence splits, so by the splitting lemma we get the desired direct sum decomposition.

$$H^n(X;G) \cong H^n(A;G) \oplus H^n(X,A;G)$$

Proposition 0.7 (Exercise 3.1.9). Suppose $f : S^n \to S^n$ has degree d. Then $f^* : H^n(S^n; G) \to H^n(S^n; G)$ is multiplication by d. (Recall that $H^n(S^n; G) \cong G$.)

Proof. We follow the proof of Lemma 2.49 from Hatcher. For $g \in G$, let $\phi_g : \mathbb{Z} \to G$ be the map $1 \mapsto g$. Note that ϕ_g induces a map on the cochain complexes $(\phi_g)_* : C_n^*(S^n; \mathbb{Z}) \to C_n^*(S^n; G)$, which acts on a general cochain as

$$(\phi_g)_*\left(\sum_i n_i\alpha_i\right) = \sum_i (n_ig)\alpha_i$$

where $n_i \in \mathbb{Z}$ and $\sum_i n_i \alpha_i$ is a singular cochain. Since $(\phi_g)_*$ commutes with the coboundary operator, it induces a map $(\phi_g)_* : \widetilde{H}^n(S^n; \mathbb{Z}) \to \widetilde{H}^n(S^n; G)$. Since f^* is \mathbb{Z} -linear, that is,

$$f^*\left(\sum_i n_i \alpha_i\right) = \sum_i n_i f^*(\alpha_i)$$

we get that f^* "commutes" with $(\phi_g)_*$ by a relatively simple calculation. (We put commutes in quotations because f^* refers to two different maps on either side of the equal sign.)

$$(\phi_g)_* \circ f^* \left(\sum_i n_i \alpha_i\right) = (\phi_g)_* \left(\sum_i n_i f^*(\alpha_i)\right) = \sum_i (n_i g) f^*(\alpha_i)$$
$$= f^* \left(\sum_i (n_i g) \alpha_i\right) = f^* \circ (\phi_g)_* \left(\sum_i n_i \alpha_i\right)$$
$$\implies (\phi_g)_* \circ f^* = f^* \circ (\phi_g)_*$$

Thus the middle square of the following diagram commutes.

$$\mathbb{Z} \xrightarrow{\cong} \widetilde{H}^{n}(S^{n};\mathbb{Z}) \xrightarrow{f^{*}} \widetilde{H}^{n}(S^{n};\mathbb{Z}) \xrightarrow{\cong} \mathbb{Z}$$

$$\downarrow^{\phi_{g}} \qquad \downarrow^{(\phi_{g})_{*}} \qquad \downarrow^{(\phi_{g})_{*}} \qquad \downarrow^{\phi_{g}}$$

$$G \xrightarrow{\cong} \widetilde{H}^{n}(S^{n};G) \xrightarrow{f^{*}} \widetilde{H}^{n}(S^{n};G) \xrightarrow{\cong} G$$

Thinking about the formula for $(\phi_g)_*$ on cochains above, we see that the outer squares commute. Since the upper f^* is multiplication by d (by hypothesis), the lower f^* must also be be multiplication by d in order to satisfy commutativity.

Lemma 0.8 (for Exercise 3.1.13). Let X, Y be path connected and $f : (X, x_0) \to (Y, y_0)$ be continuous. Let $p_X : \pi_1(X) \to H_1(X) \cong \pi_1(X)/[\pi_1(X), \pi_1(X)]$ be the canonical projection. Define p_Y by analogy. Let f_*^{π} be the induced map on π_1 and let f_*^H be the induced map on H^1 . Then we have the following commutative diagram.

$$\begin{array}{ccc} \pi_1(X) & \xrightarrow{f_*^{\pi}} & \pi_1(Y) \\ & \downarrow^{p_X} & & \downarrow^{p_Y} \\ H_1(X) & \xrightarrow{f_*^{H}} & H_1(Y) \end{array}$$

Proof. Let $[\gamma] \in \pi_1(X)$, with representative $\gamma : S^1 \to X$. Then we have the following commutative diagrams.

Commutativity of the left diagram is obvious, commutativity of the second is just the statement that H_1 is a covariant functor. Using the discussion on page 168 of Hatcher, we have a good way to think about p_X and p_Y . We know that $H^1(S^1) \cong \mathbb{Z}$; let *a* be the generator. As noted by Hatcher, an equivalent definition of p_X and p_Y is

$$p_X[\gamma] = \gamma^H_*(a) \qquad p_Y[\eta] = \eta^H_*(a)$$

Now we can just do a computation to see that the original square commutes. Recall the the definition of f_*^{π} is just $f_*^{\pi}[\gamma] = [f \circ \gamma]$.

$$f_*^H \circ p_X[\gamma] = f_*^H \circ \gamma_*^H(a) = (f \circ \gamma)_*^H(a) = p_Y[f \circ \gamma] = p_Y \circ f_*^\pi[\gamma]$$

Thus our square commutes.

Lemma 0.9 (for Exercise 3.1.13). Let X be path connected and G an abelian group. Let K be a K(G, 1) space. Let $p = p_X$ and f_*^H, f_*^{π} be as in the previous lemma. Then we have the following commutative diagram.

Proof. Since G is abelian, $G \cong \pi_1(K) \cong H_1(K)$, so the right side of the square from the previous lemma collapses.

Definition 0.1. Let (X, x_0) and (Y, y_0) be pointed spaces. The we define $\langle X, Y \rangle$ to be the set of basepoint-preserving homotopy classes of basepoint-preserving maps $X \to Y$.

Proposition 0.10 (Exercise 3.1.13). Let (X, x_0) be a connected CW complex, and G be an abelian group. Then define a map

$$\Phi: \langle X, K(G, 1) \rangle \to \operatorname{Hom}(H_1(X), G) = H^1(X; G)$$

For $f: X \to K(G, 1)$, let [f] denote the class of f up to basepoint-preserving homotopy, and define $\Phi[f] = f_*^H : H_1(X) \to H_1(K(G, 1)) \cong G$. (Recall that $\operatorname{Hom}(H_1(X), G) = H^1(X; G)$ via the UCT.) Then Φ is a bijection.

Proof. First, note that Φ is well defined because the induced map f_*^H depends only on the homotopy class of f.

In the following, we suppress basepoints in all of our notation, but the reader should keep in mind that X and K(G, 1) do have basepoints.

As in the previous lemmas, let $p : \pi_1(X) \to H_1(X)$ be the canonical projection. We define $\Psi : \operatorname{Hom}(H_1(X), G) \to \langle X, K(G, 1) \rangle$ as follows. Given $\alpha \in \operatorname{Hom}(H_1(X), G)$, consider the composition $\alpha \circ p : \pi_1(X) \to G$.

Since $G = \pi_1(K(G, 1))$, by Proposition 1.B9, there is a basepoint-preserving map $\widetilde{\alpha} : X \to K(G, 1)$ inducing $\alpha \circ p$ (that is, $\widetilde{\alpha}^{\pi}_* = \alpha \circ p$), and furthermore $\widetilde{\alpha}$ is unique up to homotopy fixing x_0 . Then we define $\Psi(\alpha) = [\widetilde{\alpha}]$. Thus it is clear that $[\widetilde{\alpha}] \in \langle X, K(G, 1) \rangle$. However, we still need to check that Ψ is well-defined.

To check that Ψ is well-defined, we need to check that if $\alpha = \beta$, then $\Psi(\alpha) = \Psi(\beta)$. If $\alpha = \beta$, then $\alpha \circ p = \beta \circ p$. Then by Proposition 1.B9, we get $\tilde{\alpha}, \tilde{\beta} : X \to K(G, 1)$, both preserving basepoints. By the "uniqueness up to basepoint-preserving homotopy," since $\alpha \circ p = \beta \circ p$, there is a basepoint-preserving homotopy $\tilde{\alpha} \simeq \tilde{\beta}$. Thus $[\tilde{\alpha}] = [\tilde{\beta}]$, so $\Psi(\alpha) = \Psi(\beta)$. Thus Ψ is well-defined.

Now we claim that Ψ is inverse to Φ . Let $\alpha \in \text{Hom}(H_1(X), G)$. Then

$$\Phi \circ \Psi(\alpha) = \Phi\left[\widetilde{\alpha}\right] = \widetilde{\alpha}_*^H$$

By the previous lemma, $\widetilde{\alpha}^{\pi}_* = \widetilde{\alpha}^{H}_* \circ p$. By definition of Ψ , $\widetilde{\alpha}^{\pi}_* = \alpha \circ p$. Thus $\alpha \circ p = \widetilde{\alpha}^{H}_* \circ p$, so $\alpha = \widetilde{\alpha}^{H}_*$ on the image of p. But p is surjective, so this says that $\alpha = \widetilde{\alpha}_* H$. Thus $\Phi \circ \Psi(\alpha) = \alpha$. Now let $[f] \in \langle X, K(G, 1) \rangle$ and choose a representative $f: X \to K(G, 1)$. Then

$$\Psi \circ \Phi[f] = \Psi(f_*^H)$$

By the previous lemma, $f_*^{\pi} = f_*^H \circ p$, so f is a map that induces $f_*^H \circ p$, so $\Psi(f_*^H) = [f]$.